Neural networks are susceptible to data inference attacks such as the membership inference attack, the adversarial model inversion attack and the attribute inference attack, where the attacker could infer useful information such as the membership, the reconstruction or the sensitive attributes of a data sample from the confidence scores predicted by the target classifier. In this paper, we propose a method, namely PURIFIER, to defend against membership inference attacks. It transforms the confidence score vectors predicted by the target classifier and makes purified confidence scores indistinguishable in individual shape, statistical distribution and prediction label between members and non-members. The experimental results show that PURIFIER helps defend membership inference attacks with high effectiveness and efficiency, outperforming previous defense methods, and also incurs negligible utility loss. Besides, our further experiments show that PURIFIER is also effective in defending adversarial model inversion attacks and attribute inference attacks. For example, the inversion error is raised about 4+ times on the Facescrub530 classifier, and the attribute inference accuracy drops significantly when PURIFIER is deployed in our experiment.
translated by 谷歌翻译
很少有动作识别旨在仅使用少量标记的训练样本识别新型动作类别。在这项工作中,我们提出了一种新颖的方法,该方法首先将每个视频汇总到由一组全球原型和一组集中原型组成的复合原型中,然后比较基于原型的视频相似性。鼓励每个全局原型总结整个视频中的特定方面,例如动作的开始/演变。由于没有针对全球原型提供明确的注释,因此我们使用一组专注的原型专注于视频中的某些时间戳。我们通过匹配支持视频和查询视频之间的复合原型来比较视频相似性。例如,从相同的角度来比较视频,以比较两个动作是否同样开始。对于集中的原型,由于动作在视频中具有各种时间变化,因此我们采用两分匹配,以比较具有不同时间位置和偏移的动作。实验表明,我们提出的方法在多个基准上实现了最先进的结果。
translated by 谷歌翻译
第一人称行动认可是视频理解中有挑战性的任务。由于强烈的自我运动和有限的视野,第一人称视频中的许多背景或嘈杂的帧可以在其学习过程中分散一个动作识别模型。为了编码更多的辨别特征,模型需要能够专注于视频的最相关的动作识别部分。以前的作品通过应用时间关注但未能考虑完整视频的全局背景来解决此问题,这对于确定相对重要的部分至关重要。在这项工作中,我们提出了一种简单而有效的堆叠的临时注意力模块(STAM),以基于跨越剪辑的全球知识来计算时间注意力,以强调最辨别的特征。我们通过堆叠多个自我注意层来实现这一目标。而不是天真的堆叠,这是实验证明是无效的,我们仔细地设计了每个自我关注层的输入,以便在产生时间注意力期间考虑视频的本地和全局背景。实验表明,我们提出的STAM可以基于大多数现有底座的顶部构建,并提高各个数据集中的性能。
translated by 谷歌翻译
人的凝视是一种成本效益的生理数据,揭示了人类的潜在注意力模式。选择性注意机制有助于通过忽略分散剂的存在,帮助认知系统专注于任务相关的视觉线索。由于这种能力,人类可以有效地从一个非常有限数量的训练样本中学习。灵感来自这种机制,我们旨在利用具有小型训练数据的医学图像分析任务的凝视。我们所提出的框架包括骨干编码器和选择性注意网络(SAN),用于模拟潜在的注意力。 SAN通过估计实际的人的凝视,隐含地编码与医学诊断任务相关的可疑区域。然后我们设计一种新颖的辅助注意力块(AAB),以允许从骨干编码器使用SAN的信息,以专注于选择性区域。具体而言,该块使用多针注意层的修改版本来模拟人类视觉搜索过程。请注意,SAN和AAB可以插入不同的底部,并且在配备有任务特定的头部时,该框架可用于多个医学图像分析任务。我们的方法经过证明在3D肿瘤分割和2D胸X射线分类任务中实现了卓越的性能。我们还表明,SAN的估计凝视概率图与由董事会认证的医生获得的实际凝视固定图一致。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译